问答题
设n维向量组α
1
,α
2
,…,α
s
线性无关,其中s为大于2的偶数.以α
1
+α
2
,α
2
+α
3
,…,α
s-1
+α
s
,α
s
+α
1
,作为列向量构作矩阵
A=(α
1
+α
2
,α
2
+α
3
,…,α
s-1
+α
s
,α
s
+α
1
,
求非齐次线性方程组(Ⅰ):Ax=α
1
+α
s
的通解.
【参考答案】
[解] 由题设知,线性方程组(Ⅰ)的系数矩阵A为n×s矩阵,所以(Ⅰ)的未知量个数为s,下证r(A)=s-1.首先由 ......
(↓↓↓ 点击下方‘点击查看答案’看完整答案 ↓↓↓)
点击查看答案
<上一题
目录
下一题>
热门
试题
问答题
已知线性方程组 有非零公共解,求a的值及其所有公共解.
点击查看答案
问答题
求可逆矩阵P3×3,Q4×4使得
点击查看答案
相关试题
设A是n阶正定矩阵,α1,α2,α3是非零...
求矩阵A的矩阵向量.
证明:A和AT有相同的特征值;
求出行列式|A4-2A3-4A2+3A+5E|...
若α,A满足A2α+Aα-6α=0,求A的全...