问答题
设λ
1
、λ
2
分别为n阶实对称矩阵A的最小和最大特征值,X
1
、X
2
分别为对应于λ
1
和λ
n
的特征向量,记 f(X)=
,X∈R
2
,X≠0 证明:λ
1
≤f(X)≤λ
n
,minf(X)=λ
1
=f(X
1
),maxf(X)=λ
n
=f(X
n
).
【参考答案】
正确答案:只证最大值的情形(最小值情形的证明类似):必存在正交变换X=PY(P为正交矩阵,Y=(y
1
(↓↓↓ 点击下方‘点击查看答案’看完整答案 ↓↓↓)
点击查看答案
<上一题
目录
下一题>
热门
试题
问答题
设矩阵An×n正定,证明:存在正定阵B,使A=B2.
点击查看答案
问答题
设c1,c2,…,cn均为非零实常数,A=(aij)n×m为正定矩阵,令bij=aijcicj(i,j=1,2,…,n),矩阵B=(bij)n×n,证明矩阵B为正定矩阵.
点击查看答案
相关试题
设D=为正定矩阵,其中A,B分别为m阶,n阶...
已知齐次线性方程组=有非零解,且矩阵A=...
已知矩阵B=相似于对角矩阵A。(1)求a的...
设二次型f(x1,x2,x3)=XTAX=ax12...
设A、B为同阶正定矩阵,且AB=BA,证明:AB...