问答题
设二次型f(x
1
,x
2
,x
3
)=X
T
AX=ax
1
2
+2x
2
2
一2x
3
2
+2bx
1
x
3
(b>0),其中二次型f的矩阵A的特征值之和为1,特征值之积为一12. (1)求a、b的值; (2)利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.
【参考答案】
正确答案:(1)f的矩阵为A=
,由λ
1
+λ
2
+λ
3......
(↓↓↓ 点击下方‘点击查看答案’看完整答案 ↓↓↓)
点击查看答案
<上一题
目录
下一题>
热门
试题
问答题
设A、B为同阶正定矩阵,且AB=BA,证明:AB为正定矩阵.
点击查看答案
问答题
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=.(1)记x=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)的矩阵为A—1;(2)二次型g(X)=XTAX与f(X)的规范形是否相同说明理由.
点击查看答案
相关试题
设D=为正定矩阵,其中A,B分别为m阶,n阶...
已知齐次线性方程组=有非零解,且矩阵A=...
已知矩阵B=相似于对角矩阵A。(1)求a的...