问答题
设矩阵A=
可逆,向量α=
是矩阵A
*
的一个特征向量,λ是α对应的特征值.其中A
*
是A的伴随矩阵.试求a、b和λ的值.
【参考答案】
正确答案:由A可逆知A
*
可逆,于是有λ≠0,|A|≠0.由题设,有A
*
α=λ......
(↓↓↓ 点击下方‘点击查看答案’看完整答案 ↓↓↓)
点击查看答案
<上一题
目录
下一题>
热门
试题
问答题
设矩阵A=的特征值之和为1,特征值之积为-12(b>0).(1)求a、b的值;(2)求一个可逆矩阵P,使P-1AP=A为对角矩阵.
点击查看答案
问答题
设矩阵A=,B=P-1A*P,求B+2E的特征值与特征向量,其中A*为A的伴随矩阵,E为3阶单位矩阵.
点击查看答案
相关试题
设3阶实对称矩阵A的各行元素之和均为3,...
设A为三阶矩阵,α1,α2,α3是线性无...
设三阶实对称矩阵A的秩为2,λ1=λ2=...
设n阶矩阵(1)求A的特征值和特征向量;(...
设α=(a1,2,…,an)T是Rn中的非零向...