问答题
设α是n维列向量,已知α
T
α阶矩阵A=E-αα
T
,其中E为n阶单位矩阵,证明矩阵A不可逆.
【参考答案】
正确答案:由于A=E-αα
T
,αα
T
=1,故有 A
2
(......
(↓↓↓ 点击下方‘点击查看答案’看完整答案 ↓↓↓)
点击查看答案
<上一题
目录
下一题>
热门
试题
问答题
设A是n阶反对称矩阵,(Ⅰ)证明对任何n维列向量α,恒有αTAα=0;(Ⅱ)设A还是实矩阵,证明对任何非零实数c,矩阵A+cE恒可逆.
点击查看答案
问答题
已知A=-E+αβT,其中α=,β=,且αTβ=3,证明A可逆并求A-1.
点击查看答案
相关试题
已知向量组α1,α2,…,αs线性无关,...
已知n维向量α1,α2,α3线性无关,且...
已知4维向量α1,α2,α3,α4线性相...
设向量组(Ⅰ)α1,α2,…,αs和(Ⅱ...
已知A是n阶非零矩阵,且A中各行元素对应成...