问答题
设f(x)在[0,2]上连续,在(0,2)内可导,f(0)=f(1),
,
证明:存在一个ξ∈(0,2),使f"(ξ)=0.
【参考答案】
因为f(0)=f(1),可知f(x)在[0,1]上满足罗尔定理,
于是存在一个ξ
1
∈(0......
(↓↓↓ 点击下方‘点击查看答案’看完整答案 ↓↓↓)
点击查看答案
<上一题
目录
下一题>
热门
试题
问答题
已知曲线积分A(常数),其中φ(x)是可导函数且φ(1)=1,L是绕原点O(0,0)一周的任意正向闭曲线,试求出φ(x)及A.
点击查看答案
问答题
已知函数u=u(x,y)满足方程,试选择常数a,b,使得通过变换z=ueax+by把原方程化为以z为未知函数的方程,且其中无一阶偏导数项.
点击查看答案
相关试题
计算.
设二维随机向量(X,Y)在边长为1的正方形...
设总体X服从正态分布N(主,σ2),X1,X...
求正交变换矩阵Q,使得通过变换X=Qy,化此...
已知向量组β1=[0,1,-1]T,β2...