问答题
设A为n阶矩阵,若A
k—1
α≠0,而A
k
α=0.证明:向量组α,Aα,…,A
k—1
α线性无关.
【参考答案】
正确答案:令l
0
α+l
1
Aα+…+l
k—1
A
......
(↓↓↓ 点击下方‘点击查看答案’看完整答案 ↓↓↓)
点击查看答案
<上一题
目录
下一题>
热门
试题
问答题
设α1,α2,…,αt为n个n维向量,证明:α1,α2,…,αt线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αt线性表示.
点击查看答案
问答题
设α1,α2,…,αt为AX=0的一个基础解系,P不是AX=0的解,证明:β,β+α1,β+α2,…,β+αt线性无关.
点击查看答案
相关试题
设(I)(1)求(I),(II)的基础解系;...
设(I),α1,α2,α3,α4为四元非...
A,B为n阶矩阵且r(A)+r(B)<n.证明:...
a,b取何值时,方程组有解
设A为三阶矩阵,A的第一行元素为a,b,c且...