问答题
设向量组α
1
,α
2
,…,α
n—1
为n维线性无关的列向量组,且与非零向量β
1
,β
2
正交.证明:β
1
,β
2
线性相关.
【参考答案】
正确答案:令A=
,因为α
1
,α
2
,…,α
n
......
(↓↓↓ 点击下方‘点击查看答案’看完整答案 ↓↓↓)
点击查看答案
<上一题
目录
下一题>
热门
试题
问答题
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.(1)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示;(2)设α1=,求出可由两组向量同时线性表示的向量.
点击查看答案
问答题
设A为n阶矩阵,若Ak—1α≠0,而Akα=0.证明:向量组α,Aα,…,Ak—1α线性无关.
点击查看答案
相关试题
设(I)(1)求(I),(II)的基础解系;...
设(I),α1,α2,α3,α4为四元非...
A,B为n阶矩阵且r(A)+r(B)<n.证明:...
a,b取何值时,方程组有解
设A为三阶矩阵,A的第一行元素为a,b,c且...