问答题
设f(x),g(x)在[a,b]上二阶可导,g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,证明:(1)在(a,b)内,g(x)≠0;(2)在(a,b)内至少存在一点ξ,使
【参考答案】
正确答案:(1)设c∈(a,b),g(c)=0. 由g(a)=g(c)=g(b)=0,g(x)在[a,c],[c,b]上......
(↓↓↓ 点击下方‘点击查看答案’看完整答案 ↓↓↓)
点击查看答案
<上一题
目录
下一题>
热门
试题
问答题
设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证:必存在ξ∈(0,3),使f (ξ)=0.
点击查看答案
问答题
设f(x)在闭区间[一1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f (0)=0,证明:在[一1,1]内存在ξ,使得f (ξ)=3.
点击查看答案
相关试题
若函数f(x)在(一∞,+∞)内满足关系式...
正确答案:0
若f(t)=,则f (t)=______.
设f(x)在[a,b]上有定义,在(a,b)内...
设f(x)=arcsin x,ξ为f(x)在闭区间...