问答题

设A是三阶实对称阵,A~B,其中

(Ⅰ)求A的特征值;
(Ⅱ)若A的对应于λ12=0的特征向量为ξ1=1,1,0T,ξ22,2,0T
ξ3=0,2,1T,ξ4=5,-1,-3T,求A的对应于λ3的特征向量;
(Ⅲ)求矩阵A.

【参考答案】

A~B.A,B有相同的秩和特征值.显然r(B)=1.B有特征值λ12=0......

(↓↓↓ 点击下方‘点击查看答案’看完整答案、解析 ↓↓↓)