问答题
已知A暑3阶不可可矩阵,-1和2是A的特征值.B=A
2
-A-2E,求B的特征值,并问B能否相似对角化,并说明理由.
【参考答案】
正确答案:因为矩阵A不可逆,有|A|=0,从而λ=0是A的特征值. 由于矩阵A有3个不同的特征值,则A~A=
......
(↓↓↓ 点击下方‘点击查看答案’看完整答案 ↓↓↓)
点击查看答案
<上一题
目录
下一题>
热门
试题
问答题
已知A=可对角化,求可逆矩阵P及对角矩阵A,使P-1AP=A.
点击查看答案
问答题
已知A=,A*是A的伴随矩阵,求A*的特征值与特征向量.
点击查看答案
相关试题
判断n元二次型的正定性.
判断3元二次型f=x12+5x22+x32+...
用配方法化二次型x1x2+2x2x3为标准形...
用配方法把二次型2x32-2x1x2+2x1...
设三元二次型xTAx=x12+ax22+x32+...