问答题
设A=
有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P
-1
AP为对角矩阵.
【参考答案】
正确答案:因为A有三个线性无关的特征向量,所以λ=2的线性无关的特征向量有两个,故r(2E-A)=1, 而2E-A→......
(↓↓↓ 点击下方‘点击查看答案’看完整答案 ↓↓↓)
点击查看答案
<上一题
目录
下一题>
热门
试题
问答题
设ξ1,ξ2,…,ξr与η1,η2,…,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,…,ξr,η1,η2,…,ηs线性无关.
点击查看答案
问答题
证明r=n:
点击查看答案
相关试题
设A为m阶正定矩阵,B为m×n阶实矩阵.证明...
设A,B为n阶正定矩阵.证明:A+B为正定矩...
设A,B为n阶矩阵,且r(A)+r(B)<n.证...
存在可逆矩阵P,使得P-1AP,P-1BP同时...
设,求a,b及正交矩阵P,使得PTAP=B.