问答题
简答题 设F是惟一分解整环K的分式域.如果在F[x]中有f(x)=g(x)h(x)(f(x),g(x)∈K[x]),而且g(x)是本原的,证明:h(x)∈K[x].
【参考答案】
点击查看答案
<上一题
目录
下一题>
热门
试题
问答题
设K是一个惟一分解整环,又f(x),g(x)∈K[x].证明:若乘积f(x)g(x)是本原多项式,则f(x)与g(x)都是本原多项式
点击查看答案
问答题
设K是一个惟一分解整环.证明:可约的本原多项式必有次数大于零的多项式为其真因子.
点击查看答案
相关试题
假定Φ是A与间的一个一一映射,a是A的一个...
假定AB,A∩B=?A∪B=?
若(m,n)=1,则(F(α,β):F)=mn...
(F(α,β):F)≤mn.
证明:任何有限域都有比它大的代数扩域.