问答题
计算题 证明:对P[x]中任何m次多项式f(x),必有P[x]中次数≤m+1的多项式G(x)满足G(n)=f(0)+f(1)+…+f(n-1)对任何n≥1的整数成立。
【参考答案】
点击查看答案
<上一题
目录
下一题>
热门
试题
问答题
设f(x)及G(x)是P[x]中m次及≤m+1次多项式,证明:G(n)=对所以n≥1成立的充分必要条件是G(x+1)-G(x)=f(x)且G(0)=0。
点击查看答案
问答题
设整系数多项式f(x)=anxn+an-1xn-1+…+a0,它没有理根,又有素数p满足: 证明:f(x)在Q[x]中不可约。
点击查看答案
相关试题
证明每一个有限群都含有一个子群与某一Zn同...
设Α的最高次的不变因子是d(λ),则Α的...
若Α在V的某基下矩阵A是某多项式d(λ)的...
证明: 的不变因子是,1,f(λ),其中f...
A与B有相同的核的充分必要条件是AB=A,BA...