问答题

计算题

设整系数多项式f(x)=anxn+an-1xn-1+…+a0,它没有理根,又有素数p满足:

证明:f(x)在Q[x]中不可约。

【参考答案】

<上一题 目录 下一题>
热门 试题

问答题
设f(x),g(x),h(x)∈P[x],且次数皆大于等于1,证明:f(g(x))=h(g(x))的充分必要条件为f(x)=h(x)。
问答题
设α1,α2,…,αn为n个彼此不等的实数,f1(x),…,fn(x)是n个次数不大于n-2的实系数多项式,证明:。
相关试题
  • 证明每一个有限群都含有一个子群与某一Zn同...
  • 设Α的最高次的不变因子是d(λ),则Α的...
  • 若Α在V的某基下矩阵A是某多项式d(λ)的...
  • 证明: 的不变因子是,1,f(λ),其中f...
  • A与B有相同的核的充分必要条件是AB=A,BA...