问答题
设三阶实对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=—2,α
1
=(1,—1,1)
T
是A的属于特征值λ
1
的一个特征向量,记B=A
5
—4A
3
+E,其中E为三阶单位矩阵。 (Ⅰ)验证α
1
是矩阵B的特征向量,并求B的全部特征值与特征向量; (Ⅱ)求矩阵B。
【参考答案】
正确答案:(Ⅰ)由Aα
1
=α
1
得A
2
α
1......
(↓↓↓ 点击下方‘点击查看答案’看完整答案 ↓↓↓)
点击查看答案
<上一题
目录
下一题>
热门
试题
问答题
已知p=的一个特征向量。(Ⅰ)求参数a,b及特征向量p所对应的特征值;(Ⅱ)问A能不能相似对角化?并说明理由。
点击查看答案
问答题
设四元齐次线性方程组求:(Ⅰ)方程组(1)与(2)的基础解系;(Ⅱ)(1)与(2)的公共解。
点击查看答案
相关试题
证明:二次型f(x)=xTAx在||x||=1时的...