问答题
设A为n阶矩阵,α
1
,α
2
,α
3
为n维列向量,其中α
1
≠0,且Aα
1
=α
1
,Aα
2
=α
1
+α
2
,Aα
3
=α
2
+α
3
,证明:α
1
,α
2
,α
3
线性无关.
【参考答案】
[证明] 由Aα
1
=α
1
得(A-E)α
1
=0;......
(↓↓↓ 点击下方‘点击查看答案’看完整答案 ↓↓↓)
点击查看答案
<上一题
目录
下一题>
热门
试题
问答题
设α1,α2,…,αn(n≥2)线性无关,证明:当且仅当n为奇数时,α1+α2,α2+α3,…,αn+α1线性无关.
点击查看答案
问答题
设α1,…,αm,β为m+1维向量,β=α1+…+αm(m>1).证明:若α1,…,αm线性无关,则β-α1,…,β-αm线性无关.
点击查看答案
相关试题
设三维向量空间R3中的向量ξ在基α1=(...
设三维向量空间的两组基,向量γ在基β1,...
设α1,α2,…,αn为n个线性无关的n维...
设向量组线性相关,但任意两个向量线性无关...
设α1,α2,…,αm,β1,β2,…,...