问答题
设n×n矩阵A(t)在a〈t〈b上连续,X1(t),...,Xn(t)是齐次线性方程组dX/(dt)=A(t)X的基本解组。令Φ(t)=(X1(t),...,Xn(t))。又设n维向量函数R(t,X)在区域{(t,X):a〈t〈b,||X||〈∞}上连续,试证明Cauchy问题与积分方程等价,即若X=X(t)是线性方程组的解,则X=X(t)是积分方程的解;反之,若X=X(t)是积分方程的连续解,则X=X(t)是线性方程组的解