问答题

计算题 证明:当A是正定矩阵时,f是正定二次型。

【参考答案】

<上一题 目录 下一题>
热门 试题

问答题
设A是n级可逆矩阵,求二次型的矩阵。
问答题
设f(x),g(x)是数域P上两个不全为零的多项式,令S={u(x)f(x)+v(x)g(x)丨u(x),v(x)∈P[x]}.证明:存在m(x)∈S,使S={h(x)m(x)丨h(x)∈P[x]}。
相关试题
  • 证明每一个有限群都含有一个子群与某一Zn同...
  • 设Α的最高次的不变因子是d(λ),则Α的...
  • 若Α在V的某基下矩阵A是某多项式d(λ)的...
  • 证明: 的不变因子是,1,f(λ),其中f...
  • A与B有相同的核的充分必要条件是AB=A,BA...