问答题
设A是n×n矩阵,对任何n维列向量X都有AX=0,证明:A=O.
【参考答案】
正确答案:由于对任何x均有AX=0,取X=[1,0,…,0]
T
,由
得a
11......
(↓↓↓ 点击下方‘点击查看答案’看完整答案 ↓↓↓)
点击查看答案
<上一题
目录
下一题>
热门
试题
问答题
向量组β1,β2,…,βt可由向量组α1,α2,…,αs线性表出,设表出关系为若α1,α2,…,αs线性无关,证明:r(β1,β2,…,βt)=r(C).
点击查看答案
问答题
设n阶矩阵A的秩为1,试证:(1)A可以表示成n×1矩阵和1×n矩阵的乘积;(2)存在常数μ,使得Ak=μk-1A
点击查看答案
相关试题
已知4阶方阵A=[α1,α2,α3,α4...
已知线性方程组的通解为[2,1,0,1]...
已知η1=[一3,2,0]T,η2=[一...
已知线性方程组(1)a,b为何值时,方程组...
已知线性方程组(I)及线性方程组(Ⅱ)的...