问答题

[说明]
Kruskal算法是一种构造图的最小生成树的方法。设G为一无向连通图,令T是由G的顶点构成的于图,Kmskal算法的基本思想是为T添加适当的边使之成为最小生成树:初始时,T中的点互相不连通;考察G的边集E中的每条边,若它的两个顶点在T中不连通,则将此边添加到T中,同时合并其两顶点所在的连通分量,如此下去,当添加了n-1条边时,T的连通分量个数为1,T便是G的一棵最小生成树。
下面的函数void Kruskal(EdgeType edges[],int n)利用Kruskal算法,构造了有n个顶点的图 edges的最小生成树。其中数组father[]用于记录T中顶点的连通性质:其初值为father[i]=-1 (i=0,1,…,n-1),表示各个顶点在不同的连通分量上;若有father[i]=j,j>-1,则顶点i,j连通;函数int Find(int father[],int v)用于返回顶点v所在树形连通分支的根结点。
[函数]
#define MAXEDGE 1000
typedef struct
int v1;
int v2;
EdgeType;
void Kruskal(EdgeType edges[],int n)
int father[MAXEDGE];
int i,j,vf1,vt2;
for(i=0;i<n;i+ +) father[i]=-1;
i=0;
j=0;
while(i<MAXEDGE && j< (1) )
vf1=Find(father,edges[i].v1);
vf2=Find(father,edges[i].v2);
if( (2) )
(3) =vf1;
(4) ;
printf("%3d%3d\n",edges[i].v1,edges[i].v2);

(5) ;
int Find(int father[],int v)
int t;
t=v;
while(father[t]>=0) t=father[t];
return(t);

【参考答案】

(1) n-1 (2) vf1! =vf2 (3) father[vf2] (4) j++ (5) i++
热门 试题

问答题
[说明] 有若干教师,每个教师只有姓名,一个教师可以指导多名研究生;每名研究生有姓名和研究方向,程序最后输出每个教师指导的所有研究生的姓名和研究方向。[Java程序]public class Teacher String name; int top=0; Student[] student=new Student[20]; public Teacher() public Teacher(String name) this.name=name; boolean add(Student stu) int len=this.student.length; if (top<len-1) this.student[top]=siu; (1) ; return true; else return (2) ;void disp() System.out.println(“指导老师 ”+this.name); System.out.println(“研究生:”); for(int i=0;i< (3) ;i++) System.out.println(“姓名:”+this.student[i].name+“ t研究方向:”+this.student[i]. search); public static void main(String[] args) Teacher t[]=new Teacher(“李明”),new Teacher(“王华”); Student s1 = new Student(“孙强”,“数据库”); Student s2 = new Student(“陈文”,“软件工程”); Student s3 = new Student(“章锐”,“计算机网络”); if(! t[0].add(s1)) System.out.println(“每个老师最多只能指导20个学生!”); if(! t[0].add(a2)) System.out.println(“每个老师最多只能指导20个学生!”); if(! t[1].add(s3)) System.out.println(“每个老师最多只能指导20个学生!”); for(int i=0;i<2;i++) (4) ; class (5) String name; String search; public Student() public Student(String name,String search) this.name=name; this.search=search; String getName()return this.name; String getSearch()return this.search;