问答题
已知离散时间系统的系统函数如下:
设题所示离散系统初始状态为零且激励e(k)=δ(k),用时域解法及z域解法求状态矢量x(k)与输出矢量y(k)。
【参考答案】
解 (1)z域解法
已得状态方程为
输出方程为
即......
(↓↓↓ 点击下方‘点击查看答案’看完整答案 ↓↓↓)
点击查看答案
<上一题
目录
下一题>
热门
试题
问答题
用时域解法及z域解法求题中离散时间系统的状态过渡矩阵。
点击查看答案
问答题
列写下图所示系统的状态方程与输出方程。并由初始状态x1(0),x2(0)导出系统的初始条件y(0),y (0)。
点击查看答案
相关试题
解 即可控阵不满秩,所以系统不是完全可控...
如已知系统的参数矩阵如下,试分析该系统的...
解 即可控阵满秩,所以系统完全可控。又即...
y(k+3)+3y(k+2)+3y(k+1)+...
解 即可控阵满秩,所以系统完全可控。又即...