未分类题

证明下列各题:
   (1)在(-∞,+∞)上一致收敛;
   (2)在[a,b](a>0)上一致收敛;
   (3)
   i)在[a,b](a>0)上一收敛;
   ii)在[0,b]上不一收敛;
   (4)上一致收敛;
   (5)上一致收敛.

A.174.24.96:6088/Latex/latex.action?latex=XGludF97MX1eeytcaW5mdHkgfVxmcmFje3leMi14XjJ9e1xsZWZ0KCB4XjIreV4yIFxyaWdodCle%0D%0AMn1keA%3D%3D'
B.174.24.96:6088/Latex/latex.action?latex=XGludF97MX1eeytcaW5mdHkgfWVeey14XjJ5fWR5'
C.174.24.96:6088/Latex/latex.action?latex=XGludF97MX1eeytcaW5mdHkgfXhlXnsteHl9ZHku'
D.174.24.96:6088/Latex/latex.action?latex=XGludF97MH1eezF9bG5cbGVmdCggeHkgXHJpZ2h0KeWcqFxsZWZ0WyBcZnJhY3sxfXtifSxiIFxy%0D%0AaWdodF1cbGVmdCggYu%2B8njEgXHJpZ2h0KQ%3D%3D'
E.174.24.96:6088/Latex/latex.action?latex=XGludF97MH1eezF9XGZyYWN7MX17eF5wfWR45ZyoXGxlZnQoICAtXGluZnR5ICxiICBccmlnaHRd%0D%0AXGxlZnQoIG7vvJwxIFxyaWdodCk%3D'

【参考答案】

证 (1)因为对,有

而广义积分

收敛,所以由M判别法知上一致收敛.......

(↓↓↓ 点击下方‘点击查看答案’看完整答案 ↓↓↓)